Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder.
Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.