Active, passive and proprioceptive neuromuscular facilitation stretching are comparable in improving the knee flexion range in people with total knee replacement: a randomized controlled trial.

The objective of this study was to compare the immediate and medium-term effects of three stretching methods on the knee flexion range in people with a total knee replacement. 117 patients were recruited and 100 (mean age: 68.43 ± 7.95 years) of them completed the study. Patients receiving total knee replacement due to knee osteoarthritis were randomly assigned into 3 groups of: active stretching (group 1, n =32), passive stretching (group 2, n =35) and proprioceptive neuromuscular facilitation stretching (group 3, n =33). The immediate change in both active and passive knee flexion range after the first treatment session and the pattern of change in these ranges throughout the 2-week study period were compared among the three groups. All groups demonstrated significant improvement in knee ranges with time. The active range of group 1 improved by 19.9°, group 2 by 25.3° and group 3 by 22.5° throughout the 2-week period, whereas the improvements in the passive range were 18.8°, 24.5° and 22.7°, respectively. For between-group comparisons, no significant difference was found in both active (P = 0.647) and passive (P = 0.501) knee range immediately after stretching. For the changes at 2 weeks, there was also no significant difference among the groups in both active (P = 0.716) and passive (P = 0.959) knee ranges.

This study revealed that all three modes of stretching were associated with an increase in the knee flexion range of patients after total knee replacement, with no statistically significant differences between the changes seen.

Chow TP, Ng GY. Active, passive and proprioceptive neuromuscular facilitation stretching are comparable in improving the knee flexion range in people with total knee replacement: a randomized controlled trial. Clin Rehabil. 2010 Oct;24(10):911-8

Knee Assessment and Hip Mechanics

Learn how how faulty hip and pelvis mechanics influence knee function under load with this short online course.

Speak your mind

Your email will not be published.